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Applying ATLAS Technology 
to ASCI-Related Applications
Jack Dongarra University of Tennessee

Abstract

Today’s microprocessors have peak execution rates of
gigaflop/s. However, straightforward implementation in
Fortran or C of computations based on simple loops
rarely results in such high performance. To realize such
peak rates of execution for even the simplest of opera-
tions has required tedious, hand-coded, programming
efforts.

In general, the existing BLAS have proven to be very
effective in assisting portable, efficient software for
sequential, vector and shared-memory high-perfor-
mance computers. Hand-optimized BLAS are expensive,
however, tedious to produce for any particular architec-
ture, and in general will only be created when there is a
large enough market, which is not true for all platforms.
The process of generating an optimized set of BLAS for a
new architecture or a slightly different machine version
can be a time-consuming process. The programmer
must understand the architecture, how the memory hier-
archy can be used to provide data in an optimum fash-
ion, how the functional units and registers can be
manipulated to generate the correct operands at the cor-
rect time, and how best to use the compiler optimiza-
tion. Care must be taken to optimize the operations to
account for many parameters such as blocking factors,
loop unrolling depths, software pipelining strategies,
loop ordering, register allocations, and instruction
scheduling.

We have developed a general methodology for the gener-
ation of the efficient linear algebra kernels. In our
approach, we have isolated the machine-specific features
of the operation to several routines, all of which deal with
performing an optimized on-chip, cache contained, (i.e.,
in Level 1 (L1) cache) matrix multiply. This section of
code is automatically created by a code generator that
uses timings to determine the correct blocking and loop-
unrolling factors to perform an optimized on-chip multi-
ply. The user may directly supply the code generator with
as much detail as desired (e.g., the user may explicitly
indicate the L1 cache size, the blocking factor(s) to try,
etc). If such details are not provided, the generator will
determine appropriate settings via timings. Our
approach, called Automatically Tuned Linear Algebra
Software (ATLAS), has been able to match or exceed the
performance of the vendor-supplied version of matrix
multiply in almost every case.

This package has been designed to encode and efficiently
take advantage of hardware information. Currently, our
automated optimization techniques are applied to gener-
ate highly efficient implementations of dense linear alge-
bra kernels such as the BLAS, since these subprograms
are essential computational building blocks of many sci-
entific computing codes, as well as heavily used general
purpose software libraries such as LAPACK or PETSc. Our
research is well advanced, and has demonstrated the
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capability of automatically generating, for a wide range of
computers, a number of highly efficient kernels achieving
performance comparable to, and often better than, hand-
optimized codes (often written in assembler) tailored
specifically for a particular architecture. These encourag-
ing results are in addition immediately and directly re-
usable and applicable to software designed and written
for distributed-memory concurrent computers, since
these optimized kernels are also heavily used locally by
each processor in many scientific computing application
areas.

Determining and characterizing the effectiveness of run-
time optimization techniques is particularly relevant to
modern sparse linear algebra software libraries that tend
to hide from the user the internal storage format. For
instance, a certain storage structure may dictate a partic-
ular algorithmic approach. Once a general scheme of
access has been found based on given a storage structure,
one promising idea involves analyzing the sparsity pat-
tern of the matrix operand to find places where the effi-

Applying ATLAS Technology to ASCI-Related Applications (continued)

cient static optimization techniques may be re-used.
There are numerous ways in which this can be done, and
it is almost certain that there will be no provably best way.
In this case, it will also be necessary to search the space of
available options during run-time.

We are experimenting with a variety of techniques for opti-
mizing sparse matrix vector multiplication to take instruc-
tion sets, functional units, and memory hierarchies into
account. Sparse matrix–vector multiplication is of course
the inner loop in any iterative solver, even multigrid, as it
includes all the interpolation, restriction, and smoothing
operations. The structural properties of the application lead
to sparse matrices that feature a sufficiently regular pattern,
so that the automatic optimization techniques already inte-
grated in ATLAS can be successfully re-used and applied to
generate the appropriate basic sparse linear algebra kernels
needed in many applications. Our plan for achieving the
necessary and exceptionally high degree of portability and
optimization leverages the experience of our team in devel-
oping ATLAS technology. 
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Developing a Tuned Version of
ScaLAPACK’s Linear Equation Solver
Jack Dongarra University of Tennessee

Abstract

The LINPACK benchmark has been used as a yardstick in
measuring the performance of the Top500 installed high-
end computers. This benchmark was chosen because it is
widely used and performance numbers are available for
almost all relevant systems. The approach used in the
LINPACK benchmark is to solve a dense system of linear
equations. For the Top500, the benchmark allows the user
to scale the size of the problem, and to optimize the soft-
ware in order to achieve the best performance for a given
machine. This performance does not reflect the overall
performance of a given system, as no single number ever
can. It does, however, reflect the performance of a dedi-
cated system for solving a dense system of linear equa-
tions. Since the problem is very regular, the performance
achieved is quite high, and the performance numbers give
a good check of peak performance of a system.

By measuring the actual performance for different prob-
lem sizes n, a user can get not only the maximal achieved
performance Rmax for the problem size Nmax but also

the problem size N1/2 where half of the performance Rmax
is achieved. These numbers together with the theoretical
peak performance Rpeak are the numbers given in the
Top500. In an attempt to obtain uniformity across all com-
puters in performance reporting, the algorithm used in
solving the system of equations must confirm to the stan-
dard operation count for LU factorization with partial piv-
oting. In particular, the operation count for the algorithm
must be 2/3n3 + 0(n2) floating point operations.

Drawing upon our years of experience with ScaLAPACK
and BLACS development, we have developed a version of
the benchmark based on the hardware of the ASCI
Blue–Pacific. Collaborating with Andrew Cleary at LLNL,
we have achieved a performance of 2.144 teraflop/s. One
major obstacle in achieving maximal performance with the
present ASCI Blue setup is that it involves using multiple
machines for one run. This problem has been shown to
cause a loss of efficiency of approximately 20% on the cur-
rent benchmark code on ASCI Blue.
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Research on Parallel Adaptive Finite
Element Methods
Michael J. Holst University of California, San Diego

Abstract

We are developing and implementing parallel algorithms
for the adaptive solution of systems of partial differential
equations (PDEs) using the finite element method
(FEM). PDEs lie at the heart of many problems in scien-
tific computing, as many physical laws are most conve-
niently expressed through them. Many PDEs are derived
from variational formulations of physical problems.
These equations are so large that only the most efficient
algorithms can be employed, and only those that are
scalable to massively parallel computers have any
chance of success. Moreover, since it is often necessary
to model complicated geometries, many PDEs are dis-
cretized on general unstructured grids and the solver
must perform efficiently without structured geometric
grid information.

We have focused on several fundamental issues arising
in the parallel adaptive solution of linear and nonlinear
elliptic PDEs. Adaptive meshing algorithms are critical to
the successful solution of many classes of PDES. One
challenging problem in this area is to incorporate such
adaptive algorithms into a parallel-computing environ-
ment, since the final mesh (and hence the load balance)
is usually not known a priori. Our UCSD group has
developed a procedure based on globally defined grids,
each of which is fully refined in an exclusive local region,
which leads to efficient parallel adaptive methods, using
minimal communication and substantial reuse of exist-
ing quality sequential software.
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Numerical Methods for Partial
Differential Equations in Large-Scale
Scientific Computations
Raytcho D. Lazarov Texas A&M University

Abstract

Construction, analysis and numerical testing of efficient
discretization techniques for solving elliptic partial dif-
ferential equations that allow for parallel implementa-
tion are the foci of our research. This ultimately imposes
domain decomposition-type algorithms, in which each
subdomain is uniquely assigned to a processor. The case
when the meshes do not align on the interfaces between
subdomains is considered. This situation occurs when
either coarsening or refinement is done independently
and in parallel on the subdomains, generating grids that
do not match along the interfaces between the subdo-
mains. Mortar finite element techniques to glue the solu-
tions across the subdomain boundaries have been
employed. We also study a least-squares stabilization
technique for solving advection–diffusion problems and
problems of linear elasticity using the “minus one” norm
inner product.
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Work on the hypre Framework and
Molecular Simulations on 
Massively Parallel Processors
Calvin Ribbens Virginia Polytechnic Institute and State University

Abstract

Our work has two separate foci: scalable linear solvers
and computational materials science.

We are assisting in the design, development, implemen-
tation, and testing of the hypre framework and library.
Our contribution shows how a variety of domain decom-
position preconditioners fit into the framework. Also, the
ability of the larger Equation Solver Interface (ESI) stan-
dard to incorporate these preconditioned solvers will be
considered.  We are also studying the design and perfor-
mance of output coefficient access with regard to the
CoefficientAccess class of the current hypre design. The
output method on objects of this class allows precondi-
tioners to read coefficients of a matrix, e.g., as is needed
by ILU. The tradeoffs between efficiency (“How quickly
can I get the data and how well do I use the memory
hierarchy?”) and expressiveness and interoperability
(“How big is the set of preconditioners that can be easily
expressed?”) need more study.  We are also studying the
design of the ESI and hypre in terms of support for two-
level, inner-outer, preconditioned solvers. We are investi-
gating new algorithms of this type that combine domain
decomposition approaches with multigrid in an effort to
improve the applicability of multigrid without sacrificing
scalability.

We have been collaborating for more than two years
with Diana Farkas of the Materials Science and
Engineering Department at Virginia Tech on work
focused on molecular simulations on massively parallel
machines. The PI is working with LLNL’s Patrice Turchi
to incorporate the new real-space Electronic Structure
(ES) approach to study the interplay between chemical

order and topological disorder in complex bulk amor-
phous alloys. Specifically, we are modifying the existing
0(N) Tight-Binding Molecular Dynamics (TBMD) codes,
already implemented on the T3E at NERSC, to account
for the d-electron behavior in materials. This extension
has already been done in an 0(N3) serial version of the
codes. The new MD codes will be implemented on ASCI
Blue–Pacific.  We will then extend the TBMD codes to a
full spd-atomic orbital basis set and to multi-species (the
extension has already been done in an 0(N3) serial ver-
sion of the codes). All of this is done with a view toward
parallelizing the ES and Monte Carlo (MC) parts of the
scheme on the ASCI Blue machine.

Once parallel versions of the codes have been devel-
oped, the goal is to perform simulations on large sys-
tems (1,000-10,000 atoms) using an extended version of
the 0(N) TB-MD parallel codes. The current codes
require on the order of tens of hours (on a 32-node T3E)
to perform a structural minimization of a simple system
containing about 1,000 atoms. Several iterations of this
minimization are needed to study different structures
with a specific thermal history. To store the wavefunc-
tions and atomic coordinates at intermediate steps (for
later analysis), and also the final configuration, 50 MB of
disk space and 50 GB of storage are required. A single
configuration on a 32 PE system (with 1,000 atoms) is
typically of the order of 1 MB. Note that the TB-MD
codes have already been parallelized on a Cray environ-
ment. The other codes (ES and MC) require paralleliza-
tion to make the entire loop efficient. The real-space
formalism will lead to a full implementation of the
codes on MPP machines.
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Scalable Linear Solvers for Partial
Differential Equations
Jinchao Xu Pennsylvania State University

Abstract

Our work concerns scalable linear solvers with special
emphasis on multigrid/multilevel methods. Multigrid
methods are deemed to be one of the most powerful
methods for solving large-scale algebraic systems arising
from the discretization of partial differential equations.
Perhaps partially because of their mathematical com-
plexity and problem-dependent tuning and perfor-
mance, multigrid methods are underutilized in ASCI
applications. One particular area of fruitful collaboration
is the development of the so-called algebraic multigrid
methods, in which our experience ranges from theoreti-
cal analysis to code development. 

Our particular expertise is efficient methods for convec-
tion-dominated convection–diffusion problems, includ-
ing new monotone finite element schemes, ordering
algorithms for effective Gauss–Seidel iteration, and effi-
cient multigrid algorithms for unstructured grids. 

Another area of collaboration is adaptive grid techniques
in finite element discretizations. Whereas adaptive finite
element grid refinement has mostly been done in an
“unstructured” fashion, “locally structured” refinement
technique appears to have great potential for efficient
finite element implementation on high-performance
computers.




